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In this note we give a simple unified presentation of some recent

ergodic results for semigroups of nonexpansive mappings in Hu bert space.
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SIGNIFICANCE AND EXPLANATION

The classical ergodic theory originates front statistical mechanics .

There, one is interested in the existence of limits of certain time

• averages of functions of the state of a given deterministic (mechanical)

system. Formulated mathematically the problem reduces to the question

of existence of limits of certain averages of iterates of linear oper—

ators in the discrete case or averages of semigroups of linear operators

in the continuous case.

Recently, similar questions have been studied for some classes of

nonlinear operators. The results that were obtained are rather elegant

and they shed some new light on the classical linear results. The

physical significance of these nonlinear results however is not clear.

In this note we present a simple unified treathent of some of these

recent “nonlinear ergodic” theorems.
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I
REMARXS ON NONLINEAR ERGODIC THEORY IN HILBERI’ SPACE

A. Pazy

1. Introduction

The recent developments in the ergodic theory of nonlinear mappings in Hu bert

space started with the result of B. Baillon (1] . Baillon considered a nonexpansive

map T of a real Hu bert space H into itself. He proved that if T has fixed

points in H then for every x E H, the Cesaro means

( 1.1) On(X) 

~~ 

T~x

converge weakly as n -
~ to a fixed point of T. A corresponding theorem for a

strongly continuous one parameter semigroup of nonexpansive mappings S(t) , t ~ 0

was given soon after Baillon’s work by B. Baillon and H. Brezis (2 1 . The proof of

the result for the continuous case is much simpler than Baillon s proof for the dis-

crete case. This is mainly due to the use of the generation theory of strongly

continuous semigroups of nonexpansive mappings in Hu bert space.

Brezis and Browder (6) extended the original result of Baillon to the case of

more general averages. Similar results were also obtained by R. Bruck (91 and S. Reich

(131. The corresponding version for strongly continuous semigroups of nonexpansive

mappings was derived by H. Brezis (41, using the generation theory for such semigroups.

S. Reich (171 derived the same result by reducing the continuous parameter case to the

discrete parameter case.

The purpose of this note is to present the above mentioned results in a unified

simple way . The main property of nonexpansive mappings that is used is that weak

limits of averages of iterates of such mapping are fixed points of all iterates of

these mappings (see lemea 3. 3 below) . This feature of nonexpansive mappings together

with some simple facts about weak convergence in Hu bert space , yield the ergodic

results.

Sponsored by the United States Army under Contract No. DAAG29—75-C—0024 and by the
National science Foundation under Grant No. MCS78—0].245.
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Section 2 is devoted to some elementary considerations concerning the weak con-

vergence of bounded functions f rom the reals into a real filbert space H. The main

result of this section is proposition 2.3 from which some useful sufficient conditions

for weak convergence are derived. These conditions in turn , are used in section 3 to

obtain a general version of the ergodic theorem, theorem 3.4, for nonexpansive mappings.

Theorem 3.4 contains as special cases the results of (1), (61, (9), [16) in the discrete

case and of (2), (4], (17) in the continuous case. For a similar result in a more

general setup see also Brezis—Browder [7). In the proof of theorem 3.4 no use is made

of the generation theory of strongly continuous sernigroups of nonexpansive mappings.

The same proof works in both the discrete and continuous parameter cases . Therefore ,

as can be expected, the continuity in the parameter t > 0, of S(t )x  is not neces-

sary for the ergodic theorem to hold in the continuous parameter case.

In the last section , section 4 , we use the results of section 2 to derive some

recent ergodic results due to P. L. Lions (12) for the products of resolvents of

maximal n~ notone operators in filbert space.

.
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2. Weak convergence

Let H be a real Hu bert space and let a(t) :D C -~ H be a fixed bounded

function. The domain D of a(t) will be always assumed to be an unbounded subset
+of R . With the function a Ct)  we associate the functional

(2.1) F(v) ur n  sup l l a ( t )  — vI~
2

t-I~~
teD

II~ the rest of this note we will consider limits of aCt) as t + ~ without explicitly

s stating that t -~ in D. The functional Fly) defined above is locally lipschitz

continuous and strictly convex. The strict convexity follows from the identity

(2.2) Ia - nu - (1 - ct) v II 2 .~ c i l i a  - u 11 2 + (1 - c&) lI a - vu 2 - 2a(l - u ) I I u  - vu 2

which holds for all a,u,v E H and ci e P. Moreover, F(v) -~ +~~ as lvi! + ~

and therefore F has a unique minimue in H. We follow N. Edelatein [11] in defining~

Definition 2.1

The unique point a0 
C H satisfying

(2.3) F(a
0
) = mm F lu )

ueH

is called the asymptotic center of alt) and it is denoted by a
0 

AC(a(t)).

We recall the definition of the weak w-liinit set W(a(t)) of the function alt)

(2.4) W(a(t)) = Cu : U C H, u = w— lim al t
k)s for some sequence ftk

}C D, tk 
+

where w-lim denotes the weak limit in H. Denoting by cony W(a (t)) the closed

convex hull of W(a(t)), we have

Proposition 2.2

(2.5) AC (a(t)) e conv W(a (t)).

If moreover , w—lim alt) — a then a = AC(a (t)).
t+~

Proof:

Let a0 AC(a(t)) and let a’ be the orthogonal projection of a0 
on cony W(alt)), 4

then 1w — a1, a1 — a0
) 0 for every w e ~~~~ W ( a ( t ) ) and consequently

12.6) Urn inf(a(t) — a1, a1 
— a0

) > 0
t-~~
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Passing to the limit through an appropriate sequence of t and using (2.6) in

(2.7) kIt) — a01! 2 kIt )  — a’I!2 + 2Ialt) — a1,a1 — a0
) + f l a’ — a0 fl 2

we obtain

(2.8) F(a
0
) > F(a1) + 1fa 1 

— a
0!!

2
.

From the uniqueness of the minimum of F it follows that a
0 

= a’ E cony Wla(t)). The

second part of the proposition is an imeediate consequence of the first. U

In our next results we will use the following notations;

(2.9) L L(a(t)) = {u : ue H, B limla(t),u)}
t-~—

and

(2.10) N = N(a(t)) = Cu : U C H. B lix h a l t )  — ui!
2)

t-.•~

L is obvious ly a closed linear subspace of H and alt) converges weakly as t -*

if and only if L = H. From the definition of L it follows that if w
11w2 

C W(alt))

then 1w
1 

— w
2,t) = 0 for every t C L. This result extends obviously to everj

E conv W(a(t)). The main result of this section is:

Proposition 2.3

N(a(t)) ~ cony W(a(t)) contains at most one point. If N(a(t)) fl ~~~~ W(a(t)) ~ $

then

12.11) {AC (a(t))) = N(a(t)) ~~conv W(a (t))

Proof:

Using polarization it is obvious that if u1 . 
U

2 
€ N then 0

1 
— 0

2 e L. Therefore,by

the remarks preceding this proposition, it follows that if U
1

, u2 € N (~ cony W then

U
2 

and thus N ~ cony W is at most a singleton. Let {v} N (‘I cony W. Since

C N, F(v) — lix h a l t )  - v!!
2 . Let w C W, w v—h a a(t.

~
) and let u C H.

t-I•~ ~~~~

Passing to the limit as t.5 ~ in

!la( tk
) - u11

2 hi a ( t k
) - v 11 2 + 2(a(t

k
) - v, v - u) + ( fv - u~I

2

we f ind

(2.12) F lu )  > F(v)  + 2(w — v ,v — u) + l iv — ui! 2

—4—
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The inequality (2.12) holds for all w C W and therefore also for all we cony W.

Since y e cony W we can substitute w = y in (2.12) and obtain

Flu) > F(v) + h l u — vu
2 for all u e H.

From the uniqueness of the minimum of F it follows that v = AC (a ( t ) ) .

Corollary 2.4

Let bIt) DCP~ + H be bounded. If W (b(t)) C cony W(a(t))(t N(a(t)) then

A C ( a ( t ) )  — AC (b(t)) and

12.13) w—lim bIt) = A C ( a ( t ) )
t-.~

Proof:

Since b(t) is bounded W(b(t)) 
~ $ therefore ~ W(a(t))~~ N(a(t)) ~‘ $ and by

proposition 2.3 W(b(t))= {Ac(a(t))) i.e. w—liin b(t)= AC(a(t)). Prom proposition 2.2

we then have AC(blt)) = AC ( a ( t) ) .

Corollary 2.4 is a restatement of a generalization given by Brezis and Browder [6)

to a lemea of Opial (13). Taking b(t) = aCt) in corollary 2.4 we obtain

Corollary 2.5

Let a(t) : DC -~ H be bounded. If W(a(t)) C Nla(t)) then

(2.14) w—l im alt) = AC(a (t))

We conclude this section with the following consequence of proposition 2 .3

Proposition 2.6

Let alt) : D C + H be bounded. If Nla(t)) 
~ $ then a(t) converges weakly

as t — in D if and only if

(2.15) w—lim(a(t + h) — alt)) = 0

for every h ~ for which D ) U + h — {t + h : t E U) .

Proof:

Clearly if a(t) converges weakly (2.15) holds. Let u e N ( a ( t ) ) and y e H then

(2.16) I fla(t+h) — yR 2— Qa(t) — yh1 2!~. I hIa(t+h) 
— ui!

2 — h a l t )  — UI! 2 I

+ 2 !(a (t +h )  — alt), u — y ) !

—5—
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Since halt) — uhh 2 conyerges at t ~ ~~, (2.16) implies the convergence of hI a C t — y h h
2

as t -‘ ~ for all y € H. Consequently N H and from proposition 2.3 it follows

that W (a(t)) AC(a(t)).

—6—

- ~~~~~~~~~~~~~ 

-- —j -   

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
.-

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 

-

~~

‘-

~~~~~~~~~~~~ 

_______



3. The Ergodic theorem for semigroups of nonexpansive mappings

Let D C be an additive semigroup i.e. t
1
,t2 

D imply t
1 

+ t
2 

€ D. The

main examples that we have in mind are D JR
.f 

and D = ~~~‘ = { n  : n > o}, but the

+ +results apply to any additive semigroup 0 C JR . Since 0 C P the order in P

induces a natural order in 0. We will continue to assume that D is unbounded, and

t ~ ~ in 0 will be usually written as t -+ = without explicitly stating that t C D.

Let C be a closed convex subset of H. A family of mappings SIt) : C -
~ C

t ~ 0 is called a semigroup of nonexpansive mappings on C i f :

(3.1)  S( O )  = I , SIt  + s) S(t)oS(s), s,t € D

and

(3.2) h I s t x  — S (t)yII 
.~ . Ix — 

~h ! for all x,y C C, t € U

We denote by F the (possibly empty) set of fixed points of S(t) i.e.

(3.3) F — Cx : x € C, S(t)x = x for all t E D}

Note that in the discrete case, F coincides with the set of fixed points of SIt
0
)

where t
0 

is the smallest nonzero element of D.

From (3.2) it follows that F is a closed convex subset of C. For every p € F,

x €  C, s , t C  D, t > s  we have:

( 3 . 4 )  I I S ( t ) x  — 
~ hI = h!Slt — s).S(s)x — S(t — s)p hl ~~h h S I s)x —

So, i f  F 
~ $, t -

~ S( t ) x  is a bounded function of D CJR
1 into H and

( 3 . 5 )  F C N ( S ( t ) x )

Combining this observation with corollary 2.5 we have

Proposition 3.1

If F ~ $ then W(S(t)x) C F implies

(3.6) w— lim S(t)x • A C( S ( t )x )
t-+~

Proposition 3.1 in the discrete case ID — Z~ ) is the sufficient part of theorem 3 of

( 14 ) .  In the continuous case CD p+ ) j~~ is the sufficient part of theorem 2.1 of

( 15) .  In (15) the result is stated for semigroups SIt )  for which t -‘S(t)x is

continuous in t. The observation that the continuity of Slt )x  is not needed in

this result is due to R. Sch6neberg (181.

—7— 
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Combining (3.5) with proposition 2.6 we obtain the following result of H. Bruck (9).

Proposition 3.2

If F ~ • then a necessary an? “ufficient condition for SIt)x to converge weakly as

t -
~ in D is

(3.7) w—lim (S(t+h)x — S(t)x) — 0 for all h e  D
t-p~

We turn now to the ergodic theorem for S(t)x, that is the weak convergence of

averages of S(t)x. In order to state the result we consi4er funct.~ns

Q(s ,t )  : DxD * (0 ,~~)

and assume that there is a translation invariant measure ii on 0 such that for every

S C 0, Q(s , t) : D ~ is i measurable. In the case D = JR+ , u is the usual

Lebesgue measure whereas in the case D = 72
+ 

it is a discrete measure. We will assume

that for every s e 0, Q(s,t) is of bounded variation and its total variation will be

denoted by V(s). The function QC & , if moreover:

(3.8) f Q(s,t)du = 1 for all s C U

(3.9) lim f Q(s,t)dii = 0 for every s € D and T <

s-’~ Dfl(O,T)

and

(3.10) lim V(s) = 0

Assuming that t -* S(t)x is strongly ia—measurable and that Q € & we define

the Q—averages a(s)x of S(t)x by

(3.11) a(s)x = f Q(s,t)S(t)x dia
U

The next lemea is the principal ingredient of the ergodic results.

Lemma 3.3

Let SIt) be a semigroup of contractions on C C H. If P ~ $, Q C ~ and olt)x

is defined by (3.11) then

(3.12) W ( o ( t ) x )  C P for every x e C

—8-
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1

Proof:

Let x € C be fixed and y C, t,h € U. From

0 .~Jh~ It)x - y hh 2 — hh s t + h x  - S (h)y11 2 <
(3. 13)

.~.hiS (t )x 
— S (h)yh~

2
— hIS (t+h )x — S (h)y11 2 + 2(S(t)x — S(h)y, S(h)y — y) + ~y — S (h)y11 2

it follows upon multiplying by Q(s,t) and integrating over U that

0 < f Q(s,t)IIIS (t)x - S( h )yh h
2 - hl s t+h x - S(h)yIh 2) dii

D
13.14)

+ 2(O(s)x — S(h)y, S(h)y — y) + !h~ — Slh )yhl 2

Since F 
~ $, l h s t x  — S (h)y11 2 is bounded and it follows from (3.9) and (3.10) that

u n  sup f Q(s , t) I I I S ( t ) x  — S (h)yhI 2— hl S It+h)x — S(h )y 11 2 ) dii = 0.
s-~ D

If converges weakly to p as + — , then passing to the limit through the

sequence 5k 
in (3.14) we find

(3.15) 0 < 2(p — SIh)y, S(h)y — y )  + 1k’ — S(h)y Ih 2 for all y C C

From (3.8) and (3.11) it follows that a ( s ) x  C C for every a C U and there’ore

p C C. Substituting y = p in (3.15) yields S(h)p = p and since h € D was

arbitrary, p C F.

Combining lemma 3.3 with corollary 2.4 we obtain

Theorem 3.4

Let SIt), t € D be a semigroup of nonexpansive mappings on C C 4. If F ~1 $ and

Q e &  then

(3.16) w—lim o(t)x = p = AC(S(t)x)
t+=

holds for every x € C.

For the case D =72’ theorem 3.4 was proved by Baillon [1), in the case of

Cesaro means. Simpler proofs of Baillon’ s result were subsequently given by L. Tartar

(unpublished) and (6], (141. The general result for D =72
k is given in (6), (9), (17).

For the case U — P’. for Cesaro means, the theorem is given in (2]. The general case

U =P~ was proved in (4), (17]. In these results the continuity of t Slt)x is

used in the proof. As it turns out from theorem 3.4 this continuity is not needed for

—9—
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the result. In order to define o(s)x we had to assume that t + SI t ) x  is strongly

measurable on (0,’.). This implies, see (10), that t -
~ S(t)x is continuous on

l0~’.) but not necessarily on (0,’.) as was assumed in (4), (17).

I

I
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T 4. An eryodic theorem for products of resolvents

Let H be a real Hilbert space and let A be a maximal monotone operator in H.

For the definition and elementary properties of maximal monotone operators the reader

is referred to the texts (31, [5).

For A > 0 the resolvent of A is defined by J1 — (I + AA) ’ and it is

well known that : H ~ H is none cpansive. Given x
0 

€ H and a sequence 
~~~ 

C

we define a sequence x in H by:

(4.1) x = J x n = 1, 2 . . . .n A n-l

We denote by F the set A 10. If p e F then J
~
p — p for eve ry A ~ 0. Therefore,

for p e  F we have

( 4 . 2 )  ih x n_p II = I!3 1 x 
1 

— 
A hi x ~_ 1 — 

~hI
and thus

(4.3) F C N ( { x  ~)
—

P If F 
~ $ and A = A for all n — 1,2,... then x = and it follows fromn n A 0

theorem 3.4 that the Cesaro means

1 n—i k(4.4) 0 ( X
0

) ~~ ~k—O

converge weakly as n -* ~ to the asymptotic center of the sequence (J~x0}. Our next

proposition generalizes this result.

Proposition 4.1

Let CA } CP~ be such that 
~ 

A~ = — . If x is the sequence defined by (4.1) ,
k=0 n

F $ $  and

14.5) y — 
k=0 

A
k)~~ k—0 

A
k
x
k 

n • 0 , 1 , . ..

then the sequence y converges weakly as n -
~ — to a point p e F. Moreover the

weak limit p of y is the asymptotic center of the sequence (XL

Proof:

Cbviously WI {y ))C ~~~~ W I ( x } ) .  Using corollary 2.4 it suffices to prove that

W ( ( y }) C N ( (x )) . To do this we note that by (4.3) F C N ( ( x }) and so it suffices

to show that W ( {y )) CF .
— 11— 
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Let [E ,~ ] € A. From the definition of x we have
n

(4.6) Ix  — ~l
2 

+ 2A ( f l ,x — ~ ) + x — x 1! 2 .~~. 1x ,1 — ~h
2 n = 1, 2,...

Therefore

2A
n ITl

~
X
n 

— 
~ ) 

< X
1 

— ~h
2 

— Ix~— ~I
2

which implies

(4.7) 2(ri,y — 

~ ~ €~ 0 

Ak)~~hh x O
_ 
~hI 2

Let y € W({y }) such that

w-lim y = y
k

Passing to the limit through the sequence n.5 
in (4.7) yields

(n,y — 
~) < 0 R. Ti) € A.

From the maximality of A we deduce y € A ’O — F and the proof is complete.

Proposition 4.1 is essentially due to P. L. Lions (12). It is interesting to know

that if IA
2 

= , the sequence {x} itself converges weakly. This was proved by

H. Brezis and P. L. Lions (8]. In particular in the case A = A , F ~ $, J~x0

converges weakly as k ~ = and as a consequence, of course, a I x
0
) converges weakly

without reference to theorem 3.4. We conclude this section by proving the above

mentioned result of Brezis and Lions.

Proposition 4.2

Let {x} be the sequence defined by (4.1). If F 
~ 
$ and 

n~0 
A 2 = — then x

converges weakly as n -~

Proof:

We deduce proposition 4.2 from corollary 2.5. In view of 14.3) we have only to show

that Wl {x ))  C F.

From the definition of x it follows that A ’(x - x I y € P.s • From
n n n n-i n C

~~~~~ the monotonicity of A we have

14.8) 0 < 1
~
’n+l 

— 
~~~~~ 

x~41 
— z )  = A ~j (y~ 5.1 — y~ . y~ 41

)

-12-
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and therefore n 
~ 

hI Y n hI 2 is monotone nonincreasing. Moreover, taking ~ € A 10

- - 
in (4.6) yields

-

- 

(4.9) A 2hI y h 2 c h I x - ~II 2= hh x~ 
- ~h h 2

- 
and therefore by suffusing over n,

hh y n Ih 2~~ A~ 
k=0~~~~~~~~~~~~~

0 
- ~Ih 2

which imp lies y * 0 as n . Let x € WI(x }), from the monotonicity of A

we have

• (Ti — Y’ (~ 
— X

n
) ~~0 V(~ ,fl) € A

and passing to the limi t as n * through an appropriate subsequence we find

(n, E~ — x) > 0 Y (~~, n) € A

which by the maximality of A imp1ie~ x € A 1
0 = F and the proof is complete. •
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